Deletion of ERK2 Mitogen-Activated Protein Kinase Identifies Its Key Roles in Cortical Neurogenesis and Cognitive Function
نویسندگان
چکیده
منابع مشابه
Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function.
The mitogen-activated protein (MAP) kinases ERK1 and ERK2 are critical intracellular signaling intermediates; however, little is known about their isoform-specific functions in vivo. We have examined the role of ERK2 in neural development by conditional inactivation of the murine mapk1/ERK2 gene in neural progenitor cells of the developing cortex. ERK MAP kinase (MAPK) activity in neural progen...
متن کاملAn essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development.
The closely related mitogen-activated protein kinase isoforms extracellular signal-regulated kinase 1 (ERK1) and ERK2 have been implicated in the control of cell proliferation, differentiation and survival. However, the specific in vivo functions of the two ERK isoforms remain to be analysed. Here, we show that disruption of the Erk2 locus leads to embryonic lethality early in mouse development...
متن کاملDiverse Roles for the Mitogen-Activated Protein Kinase ERK2 Revealed by High-throughput Target Identification
5
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملInteraction of Kinase-Interaction-Motif Protein Tyrosine Phosphatases with the Mitogen-Activated Protein Kinase ERK2
The mitogen-activation protein kinase ERK2 is tightly regulated by multiple phosphatases, including those of the kinase interaction motif (KIM) PTP family (STEP, PTPSL and HePTP). Here, we use small angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC) to show that the ERK2:STEP complex is compact and that residues outside the canonical KIM motif of STEP contribute to ERK2 bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2008
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.0679-08.2008